Edición n° 2747 . 30/05/2024

El argentino Luis Caffarelli ganó el «Nobel» de Matemáticas: es el primer latinoamericano en lograrlo

A los 74 años obtuvo el Premio Abel, el equivalente al Nobel para las matemáticas. Desde hace décadas reside en Estados Unidos. Cuáles fueron sus mayores contribuciones. Su estudio sobre lo que ocurre en un vaso con hielo.

Por: Gustavo Sarmiento @GustSarmi

Las Matemáticas no tienen Nobel. Lo que usualmente es considerado como «el Nobel» de esa disciplina es el Premio Abel que entrega la Academia de Ciencias y Letras de Noruega en honor al matemático noruego, Niels Henrik Abel, fallecido hace casi un par de siglos. Y la gran novedad, que atañe a nuestro país, es que su edición 2023 la obtuvo el argentino Luis A. Caffarelli, que actualmente vive en Estados Unidos. Es el primer latinoamericano en lograrlo.

Caffarelli ganó el premio por sus «contribuciones fundamentales a la teoría de la regularidad de las ecuaciones diferenciales parciales no lineales, incluidos los problemas de frontera libre y la ecuación de Monge-Ampère», según la información oficial.

Las ecuaciones diferenciales son herramientas que la ciencia utiliza para predecir el comportamiento del mundo físico. Estas ecuaciones relacionan una o más funciones desconocidas y sus derivadas. Las funciones representan generalmente cantidades físicas, las derivadas representan sus tasas de cambio y la ecuación diferencial define la relación entre las dos. Esas relaciones son corrientes, por lo cual, las ecuaciones diferenciales desempeñan un papel de gran importancia en numerosas disciplinas, entre las que se incluyen la física, la economía y la biología.

Las ecuaciones diferenciales parciales aparecen naturalmente como leyes de la naturaleza para describir fenómenos tan diferentes como el fluir del agua o el crecimiento de las poblaciones. Estas ecuaciones fueron objeto constante de intenso estudio desde la época de Isaac Newton y Gottfried Leibniz. Pero las cuestiones fundamentales relativas a la existencia, singularidad, regularidad y estabilidad de las soluciones de algunas de las ecuaciones clave siguen sin resolverse.

Pero pocos matemáticos vivos en todo el mundo contribuyeron tanto a nuestra comprensión de las ecuaciones diferenciales parciales como el argentino nacionalizado estadounidense, quien introdujo nuevas e ingeniosas técnicas, dando pruebas de un brillante conocimiento geométrico y aportando resultados fundamentales.

Un artículo de la embajada de Noruega destaca que un caso emblemático es la teoría de la regularidad: «La regularidad –o suavidad– de las soluciones es esencial en los cálculos numéricos y la ausencia de regularidad mide la salvajez con que naturaleza puede comportarse».

«Los teoremas de Caffarelli han cambiado radicalmente nuestra comprensión de las clases de ecuaciones diferenciales parciales no lineales con amplias aplicaciones. Sus resultados son técnicamente virtuosos y cubren muchas áreas diferentes de las matemáticas y sus aplicaciones», manifestó el presidente del Comité del Premio Abel, Helge Holden.

Lo que ocurre en un vaso con hielo

El trabajo de Caffarelli se refirió durante décadas en gran parte a problemas de frontera libre. Por ejemplo, el problema del hielo que se derrite en el agua: la frontera libre es la interfase o fase intermedia entre el agua y el hielo. Es parte de lo desconocido que está por determinarse. Al derretirse los cubitos, sus aristas se van redondeando. Poco a poco se crea un nuevo mundo en esa frontera entre el sólido y el líquido, con energías y geometrías cambiantes. 

“No puedes alcanzar la verdad, pero por lo menos puedes acercarte a ella, a la complejidad de la realidad”, contó el matemático de 74 años. En una nota de El País, contaba: “Las matemáticas vinculadas a la física son las más interesantes. Yo no soy muy partidario de hacer investigaciones superabstractas, que solo puedan entender media docena de matemáticos”.

Otro ejemplo es el agua que se filtra a través de un material poroso, entendiendo la interfase entre el agua y el medio. «Caffarelli aportó soluciones esclarecedoras a estos problemas con aplicaciones a las interfases sólidolíquido, a los flujos de chorro y de cavitación, a los flujos de gases y líquidos en materiales porosos, así como a las matemáticas financieras», acotan desde la Embajada.

Caffarelli también brilló al profundizar en las ecuaciones de Navier-Stokes que describen desde 1845 el flujo de un fluido viscoso, como el aceite. Las aplicaciones son incalculables: desde analizar la circulación sanguínea o predecir el movimiento del petróleo hasta la fabricación del motor de un auto, las matemáticas financieras o el perfeccionamiento de modelos fundamentales que explican el universo.

Claramente no es lo único. Caffarelli publicó más de 320 artículos, realizó más de 130 colaboraciones y asesoró a más de 30 estudiantes de doctorado en un periodo de 50 años. «Al combinar su brillante conocimiento geométrico con ingeniosas herramientas analíticas y métodos, ha tenido y continúa teniendo un impacto muy importante en el campo», afirma Helge Holden. Para tomar dimensión de su importancia en el mundo matemático, los artículos de Caffarelli ya llevan recibidas 19.000 citas por parte de otros científicos y científicas.

Fuente:Tiempo Argentino